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Intermittency is the nonuniform distribution of eddy formations in a stream. The modu- 

lus or the square of the vortex field, the energy dissipation velocity or related quantities 

quadratic in the gradients of velocity and temperature (of the concentration of passive 

admixture) may serve as indicators. 
It is necessary to distinguish the intermittency in a sporadically turbulent stream (in 

particular near the border between a turbulent and nonturbulent region) from the inter- 
mittency in a developed turbulent stream. The cause of intermittency is the instability 

of eddy formations and in connection with this the random character of the process of 

breakdown of larger vortices into smaller ones. 
The study of intermittency has a number of aspects. In the first place, there is the 

statistical analysis of fields of the stated type which characterize the nature of inter- 

mittency. Statistical features of the vortex field [l, 23 represent a basic interest for the 
general theory of turbulence. To date it is fully possible to carry out the necessary 
measurements p]. 

Another aspect is the study of the influence of intermittency process (in terms of vari- 
ation of dissipation) on the structure of the velocity and temperature fields, and in par- 

ticular on the energy spectrum. The existence of such influence has been established 
by landau [4] and developed in 153 and pl] (see also a somewhat different statement of 

the problem in [?I. Apparently, the effect of the influence of variation of dissipation on 

the energy spectrum is most important in the so far little explored field of motions invol- 

ving very high wave numbers F-91. A universal form of the spectrum can be obtained, 
generally speaking, through the introduction of a geometrical averaged spectral density 

[l]: E (k) = exp ((1nE (k)>J, where E (k) is stochastic spectral energy density (for a 

fixed value of dissipation). The angular brackets indicate averaging. 
Connected with the study of intermittency, is, of course, the problem of the choice of 

the optimal averaging time for the different statistical characteristics of flow. This 

problem presents itself foremost in flows with a broad spectrum of motions, e. g. in 
atmospheric turbulence [5]. 

In the investigation of the characteristics of the intermittency process it is important 

above all to attempt to discern universal laws which would not depend upon the large- 
scale structures of the stream and, possibly, upon the Reynolds number (provided it is 
sufficiently large ; the developed stage of turbulence is discussed below). 

In the description of the intermittency process it has been found useful the notion of 

the breakdown coefficient, namely the ratio of values of the nonnegative field, averaged 
over different scales (Sect. 1). Using the breakdown coefficient, the spectrum and other 

field characteristics of the energy dissipation type were obtained [ 10-131. In a defined 
range of scale the spectrum has been found to be proportional to -kmi’lL (k is the wave 

number 0 < P <i). This is in agreement with experimental data [14-20, 241 which 
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-give the value of the parameter. p s 0.4. The notion of the breakdown coefficient was 
also utilized in pl] and (241 for the establishment of the logarithmic-normal law (pro- 

posed earlier [5, 61) of the distribution of energy dissipation and for the deduction of an 
analogous two-dimensional distribution. The experimental data [22-‘25, 17, 181 for 

quantities of the type of the dissipation show distributions close to logarithmic normality, 
although there are systematic deviations which are treated in Sect. 5. 

In the paper under consideration which represents a development of [13] it is shown 

that universal laws have significance for the statistical characteristics of the breakdown 

coefficient. As far as formulas for the spectrum and probability distributions of the ini- 

tial fields are concerned,these formulas actually are obtained by means of an extrapola- 
tion, and therefore they are of an approximate and nonuniversal nature. 

It is shown further that the probability distribution of the breakdown coefficient tends 
to logarithmic normality with increase of the scale ratio of the averaging process. This 
tendency, however, is sufficiently slow. determined by the logarithm of the scale ratio 
or by the logarithm of the corresponding Reynolds number. Moreover the moments of 

the breakdown coefficient do not tend towards the corresponding expressions derived from 

the limit logarithmic normal law (the situation is rather unique for processes which take 
place in nature). This latter observation is significant not only for the breakdown coef- 

ficients but also for all fields of the energy dissipation type. This is confirmed by exper- 
iments (Sect. 5). The state of the art of experimental research fully permits the direct 

determination of the statistical characteristics of the breakdown coefficient and by this 
very fact to correlate most closely theory and experiment. 

It is noted that the paper of Kolmogorov [S] contains the defined hypotheses of simi- 
larity expressed in terms of a ratio of velocity differences. This ratio may go to infinity 
which renders the theoretical and experimental research a little more difficult. Never- 
theless it is possible that universal laws exist only for relative characteristics of the tur- 

bulent flow of the kind to which the breakdown coefficient belongs. 

1. Breakdown coefficient. Let us consider a nonnegative random function 
y (z). This function may be represented in particular by one of the following quantities: 

considered as a function of the coordinate x’. in direction of the mean velocity of the 

stream. This is in accord with the interpretation with the aid of the “frozen flow”-hypo- 
thesis of experimental readings in time: Here ui and v2,s are,respectively, longitudinal 

and one of the transverse components of the velocity fluctuations, Qt,s,s is any compo- 

nent of eddy fluctuation. 8 is the fluctuation of temperature (of concentration of a pas- 
sive admixture). Taking account of the conditions of incompressibility and of local 
isotropy. the mean values of the quantities (1.1) are equal, respectively, to 

1 (E) 2 (a) 1 (E) 1 <N> -- 
15 v ’ 157“ 3v’ 

-- 
3 X (1.2) 

Here (aj is the mean value of the dissipation velocity of kinetic energy, .(N) is the 
mean equalizing velocity of fluctuations of temperature (of concentration of a passive 
admixture), and v and x are the coefficients of kinematic viscosity and of thermal dif- 
fusivity. respectively. 

The ratio of the values of the function y (z), averaged over two sections 
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will be called the breakdown coefficient. 

smaller section is included in the larger. 

In accordance with the experimentally 

Restriction with respect to h signifies that the 

confirmed theory of local homogeneity and 

local isotropy of turbulence the functions (1.1) may be taken to be homogeneous and 
isotropic with scales smaller than the characteristic macro-scale L. For such scales the 

probability distributions of the quantity qp, 1 do not depend upon x ; generally speaking, 

however, they depend upon Ihj ( l ) . This dependence defines the nonhomogeneity of the 
breakdown. 

As an example let us consider the homogeneous Markov sequence of nonnegative 
quantities Yk (k = . . . . 1, 2, 3,...) with the density distribution of each of their W (y) 

and with transition probability 

p &+I 1 Y,) = a6 (Yk+l - Y,) + (I - a) w (Yk+l) lo <’ < I) (1.4) 

where (6 (y) is the delta function. It is easy to show that P’(Yk 1 g&l) is obtained from 

(1.4) by exchanging places of Ykand Yk+l, i. e. the sequence is isotropic. Let us denote 

Q, - ql,, (hm, 2) = 3ym 
Yl + Yz + Y3 

(m = 1, 2, 3; hl = - hs = - ‘/a, ha = 6) 

Evidently 
@+Qz+Q3=3, (QI> = (Qs) 

Taking (1.4) into account, we may write 
coa3 

(QI> - (Qa> = -$(I -4 cc (Y - Y’Y 

; ; (Y + 2Y’HY + 2Y) W (Y) W (~'1 dy dy’ > 0 (1.5) 

From this it is seen that breakdown is nonhomogeneous. The integral appearing in(1.5) 
vanishes only in the case of’determinate ykr when IV (Y) = b(y --a). The degree of break- 
down n&homogeneity defined by the difference (1.5) does not exceed sh in the present 
example. 

With respect to the quantities (1.1) it would be desirable to investigate experiment- 

ally the nonhomogeneity of breakdown, in the first place the dependence upon h of the 
mean value of the breakdown coefficient. 

If the homogeneous random function Y (x) satisfies the ergodic conditions (it is suffi- 
cient that the correlation function vanishes at infinity in exponential fashion), then 

Yl(4 +.a,, - (y)q qr,z (h, 41_,o - Y, (I’)/ (1.6) 

Knowing the statistic characteristics of the breakdown coefficient, we can (with the aid 

of (1.6)) carry out the transition to the usual presentation. In particular 

(y (5 + r) y (x)) (y)+ = yir + $- I+ (&~)I 

l ) It is evident that upon h there depends the joint probability distribution for the quan- 
tities Yr (2’) and Yl (z) and, in particular, the correlation between these quantities. 
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Concluding this Section we give a simple yet important inequality, which follows 
from the nonnegative nature of Y (Z) 

qr.l (h, 2) G I/r (1.8) 

2. Similarity of acrlr. Aside from the macroscale L for the function y (5) 
there exists a microscale I* defined by the viscosity (heat transfer, diffusion). The mag- 
nitude of Z* may differ from the Kolmogorov microscale I, = v’h <a)-% (or its gener- 

alization in the case of passive admixture) by some degree of Reynolds number [ 10, 121. 

If in the interval between L and I, there are no other characteristic scales defining the 
behavior of the random funition Y (a~):), then it is required that for L > I > r > 1, 
the probability distribution for the breakdown coefficient (1.3) would depend only on the 

ratio I / r and on IhI. 
let us introduce the interval section of length p between r and I, with its center at 

the point x” = x + h (I - p). We have 

qr.z (h9 4 = !lt,p (k 2 + h (I~- P>) Q&Z (h 4 (2.1) 

All three breakdown coefficients appearing in (2.1) are governed by the same quantity 

h. We require that in the interval of scales defined above the factors on the right of 

Eq. (2.1) be statistically independent. Justifications for the use of this kind of condition 
were presented in IJ.0. 213 where a somewhat specific scheme of breakdown of large 
cubes into small ones with the same decrease of scale for each of n successive steps has 
been investigated. 

The justification in that case was based upon the fact that the breakdown should retain 

universality until the corresponding Reynolds number (defined by the energy dissipation 
averaged over the volume under consideration) is sufficiently large and the correspond- 
ing scales are large compared with I,. 

As will be seen below, the statistical independence of successive breakdown coeffici- 
ents is necessary and sufficient in order that the moments retain their exponential char- 

acter (the latter is confirmed experimentally). We shall call the two conditions formu- 

lated above (namely the dependence of the probability distribution for the breakdown 
coefficient solely upon the ratio of scales and h and the statistical independence of two 
successive coefficients with the same h) the conditions of similarity of scale, and the 

corresponding interval - the interval of similarity of scale. 
let us consider the moments of the breakdown coefficient 

up (I/r, h) = ($,‘,I (h, 4) (2.2) 

Here P is positive (not necessarily integer) number. From the conditions of similarity 

of scale with (2.1) taken into account, we obtain 

up (1 / r, 4 = aP (p / 6 4 ap 0 I P, h) 

and, since p is arbitrary, 
up (l/r, h) = ( Z/r)pp’h’ (2.3) 

The probability distribution for the breakdown coefficient is concentrated in the finite 
interval (1.8). then it is easy to see that the following restrictions must be applied : 

bs (h) - IJP (h) s 6 (620) (2.4) 

Since p0 (h) 3 0, we have 
pP(h)GP (2.5) 

If the nonhomogeneity of breakdown (dependence on h) is disregarded, we have, as shown 
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and the experimental data evaluated in terms of the breakdown coefficient with the aid 

of (1.7) give 21 zz 0.4. The inequality (2.5) is changed by a stronger one 

k?GIL+P--2 (PW 
Let us consider the series for the characteristic function of the breakdown coefficient 

cp 6% l/F, h) = (exp (b’sqr,r (h, 5))) = (2.7) 

From the inequality (2.5) it follows that this series converges absolutely and uniformly 
in any finite interval 1 s 1 < I$. A simple transformation of the series (2.7) with (2.1) 

and (2.3) taken into ac&nt yields 

(P (r, i f r, la> = <cP @It, ~3 l I P, 4) = <cp (SQP, it P ,’ r, h)) 

This signifies statistical independence of successive breakdown $oefficients. Thus, the 
requirements of similarity of scale are proven to be not only sufficient but also necessary 
in order that the moments have an exponential character. 

It is easy to verify that the inequality (2,5) ensures the fulfilment of the Carleman 

condition @6] 
i (asp)- & = 00 
p=1 

which is sufficient for the probability distributions to be uniquely defined by moments 
of integer order. It is noted that the limiting logarithmic-normal distribution considered 

in the next Section does not have this property @S], 

The set of exponents of power &., (h) (p = 0, 1,. Z.,.) uniquely fixes the probability 
distribution for the breakdown coefficient for any arbitrary value I/ r. A general form 

of the distribution may be obtained by 

logarithm of ‘the breakdown coefficient 

introducing the characteristic function for the 

9 (s, 1 f r, W = <exp (%.,r (4 a~))> 

sr,l (h* $1 = ]a 4r.t (k 2) 

The conditions of similarity of scale with (2.1) taken into account yield 

$ (r, I / r, h,_= ‘@ (% P / r, h> ‘II, (r, t / PI h) 

By virtue of the arbitrariness of p we obtain 

@ ($, E 1 r’, h) = (I f r)-a(s, ‘) = 0Xp { - a; (S, h) h (t / F)) (2.9 

The function of CL (s, IL) satisfying the condition of normalized total probability 

CL (0, h) = 0 has universal significance. This statement may be confirmed through a 

direct experimental check by measurement of the probability distribution or of particu- 
lar moments of the breakdown coefficient for various values of 8 / r. For the exponents 
of the moments we have pp (h) = - cc (- ip, 4 (2.9) 

If it is possible to disregard the effect of the nonhomogeneity of breakdown, then a (s) 
is a universal (complex) function of a single argument. The determination of this fun+ 
tion is an important task for further experimental investigations of the structure of 
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turbulent flow. 

9. Ultimrtr ptobrbility dl,eribution. For simplicity of writings, the 
dependence of all quantities on the parameter h will be omitted. The cumulants of 
the distribution of the logarithm ofthe breakdown coefficient are defined by the deriva- 
tives of the function CC (s) at zero (provided these derivatives exist). All cumulants are 
proportional to the logarithm of the scale ratio 

dP In $ (s, l/r) 
dsp s=. = ( i)4-Pu(p) (0) In +- (3.1) 

Assuming that the mean value (x1) and the dispersion (xs) of the logarithm of the 

breakdown coefficient exist, we introduce the normalize2 value of the logarithm of the 
breakdown coefficient and the corresponding characteristic function 

&,I = Izr,2 - x1 (Gr)l G”‘(M X CL l/r) = (exp {it&J) (3.2~ 

In the same manner as the proof of the integral limiting theorem p7] it may be shown 
that as In (I / r) --t 00 

X(t, Zlr)-+exp{-+t2} (3.3) 

is uniform in any limiting interval ItI < T (* ). Thus, the breakdown coefficient has 
a logarithmic-normal probability distribution for In (I / .r) + 00 . 

The quantities related to .the ultimate logarithmic-normal distribution will be indi- 
cated by a superscript asterisk. From (3.2). (3.3) we have 

LX* (s) = C%(l) (0) S + l/s&) (0) ss (3.4) 
Substituting (3.4) into (2.9) with (3.1) taken into account, we obtain 

CL; = llZP [(P - 1) (IL; - 2P1) + &,I (3.5) 

2p1*111 (I / r) = 2x, + x2, h*ln (I / r) = 2 (x1 + x2) (3.6) 

So far as x2 > 0 , it is evident from (3.6) that ps* - 2~.,* > 0. Thus, (3.5) yields 
quadratic dependence of the exponent upon the number of the moment. This contradicts 

the condition (2.5). at least for sufficiently large p. This means that although the dis- 

tribution of the breakdown coefficient tends toward the logarithmic-normal distribution, 
the moments do not tend towards the expressions which result from the limiting distri- 
bution. 

For simplicity let us consider below the case when nonhomogeneous breakdown may 

l ) To clarify the proof let it be assumed that function a(s) has all derivatives at zero, 
and let that function be expanded in series. With (2.8),(3.1) and (3.2) taken into 
account, we have 

X (t, I/ r) = exp (- itxoc,“‘.- a (tx,‘+ In (1 / r)) = 

tP (&) (q)-%P (In (l/ qp ‘3-P)) _ 

-exp[-f12)- 
In (l/r)--3 

For the proof it is really sufficient that the first two moments for the logarithm of the 
breakdown coefficient exist. 
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be disregarded. In this case the mean value of the breakdown coefficient equals unity, 
ltl = 0 (2.6). The first of the Eqs. (3.6) yields, in the general case, Pr* # 0 since 
for the limiting distribution fulfIlment of the condition 2x, + xp = 0, is not required. 
Thus, even the mean value of the breakdown coefficient calculated by the limiting log- 
arithmic-normal law, is not required to agree with the true mean value. In analogy in 
the general case ps* # CL2 = CL. 

The empirical dam-presented in Sect. 5 show that the deviation from the logarithmic- 
normal law begins already with the first order moment. However, the interpretation of 
these data in terms of the breakdown coefficient is of the nature of an approximation as 
stated in Sect. 5. 

Let us consider the case when the limiting distribution is such that pr*=O, Pa* = P- 
In this case Eq, (3.5) yields 

l 

CLP =-&w--i)9 p;+r--p;=pP (3.7) 
Taking in account the value p.z 0.4 we see that a contradiction with the restriction 
(2.4) arises at least for p > 3. It is necessary to keep in mind the conditions just 
pointed out when considering the influences of intermittency upon the structure of the 
velocity field in the frame of the ideas presented in [5. 6, 211 and also in the formula- 
tion of the problem proposed in p, 91. 

In a recent paper [28] an apprehension has been expressed that the known chain of the 
equations for the moments of the velocity field which results from the equations of 
hydrodynamics cannot yield a basis for the establishment of a theory of turbulence since 
the logarithmic-normal distribution is not determined by its moments. 

However, the investigation carried out above shows (the necessary restriction (2.5) was 
obtained in p]) that with the Friedman-Keller equations.everything is in order, although 
here also arises a peculiar situation. The true distribution is defined uniquely by its 
moments, but the moments cannot be calculated on the basis of the limiting logarithmic- 
normal distribution (at least the moments of sufficiently high order). 

4. Mod 0 1, To illustrate what has been said in the preceding Sections and to 
establish a basis of comparison with experimental data let us consider the simplest 
example of a model. let us assume that the probability distribution for the breakdown 
coefficient corresponding to a change of scale by a factor of two (1= 2r) has a constant 
density W(q, 2)=11r6(4)6(2-q) (4.1) 

where. 6 (z) is the single-valued function, equal to zero for t < 0 and to unity for t > 0 
(nonhomogeneity of breakdown is not considered). 

The scale change by a factor of two is not chosen arbitrarily. The equations of hydro- 
dynamics are quadratically nonlinear and in spectral presentation they contain a con- 
volution of Fourier components of the velocity field. As a result of this type of equation 
the energy tends to distribute itself across the spectrum in cascade mode with a decrease 
of scale by two at each step, and in the statistically steady case the supply and dissipa- 
tion of energy are mutually balanced. 

First of all let us introduce for (4.1) quantities pLpin accordance with definition(2.3) 

pp = log, + a q*dq is ) = P - h&a (P + 1) 
0 

(4.2) 
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We note at once that this leads to a value Pa Z 0.41 which agrees with the experi- 
mental data. Further. taking account of (3.Q (3.6) a simple calculation yields 

x1 = In 2--i, lcp = 1, pi* z 0.28, p2* = 2 

. 
CL*=& (F+2ln2-2) 

Thus, in agreement with what has been said at the end of Section 3, the moments of the 
limiting logarithmic-normal distribution are very far from the true moments (see Table 1). 

Let us calculate now the density of the breakdown coefficient distribution ‘bt7 (4, i/ r) 

corresponding to the arbitrary scale ratio 2 I r. For this we calculate the characteristic 
function of the logarithm of the breakdown coefficient for 1 = 2r 

$(S, 2) = $\exp jishqjdg = 2is(f + is)-’ 
0 

Further, taking account of (2.8) we have 

a (a) = - is + log, (1 + is) 

9 (S, I / I”) = (1 _t is)-lo~~z~rf exp [is In (I / r)] (4.4) 

we note that the limit transition to the log~i~mic-Norman law (3.3) is not difficult to 
carry out directly with the given model without reference to the limit theorem. By cal- 

culation of the Fourier transformation of (4.4) we obtain the density distribution of the 

logarithm of the breakdown coefficient Q (2, 17 r) which is connected with the required 

density dis~ibution for the breakdown coefficient by the obvious relatio~hip q&’ (Q) = 

= 0 (ln Q). Finally we obtain 

W (4,lP) = 
(ln ~/~~)~O~~ fW-1---i 

(l/r) r @%a fYr)) 0 (4) 0 (l/r - 4) (4.5) 

where r (x) is the gamma function. The density distribution (4.5) for J? -> & is far from 

the uniform density 
W (0, I? /r) = 00, W (I/ I*, l/r) = 0 

6, Comprrl&on with sxpsrimontrl data, The available experimental 
material on intermittency f 14-20, 22 -25, 291 pertains to the investigation of the quan- 
tities of the type (1.1) but not of the breakdown coefficients for which universal laws 
are to be expected. In the interpretation of these data in terms of the breakdown coef- 

ficient, the hansition to the limit (1.6) could be utilized, but in doing so, we would 
transgress the range of similarity of scale. As a consequence the comparison with the 

theory is informatory in nature. Least sensitive to the extrapolation indicated are evi- 

dently such characteristics as the exponents of the momenfS of various order. 

Table 1 
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Table 1 shows the information available at present in regard to those exponents. The 

data in [16-20. 291 relate to the first of the quantities (1.1) in [14, 153 to the second, 
and in 1243 to the last( l ). For comparison are shown the values -(4.2) given in the model 
investigated above and the corresponding limiting values (4.3) which correspond to the 
logarithmic-normal law. 

As seen from Table 1, the value ps may be regarded as lying within the limits of 

0.35- 0.5, while the value given by the model 0.41 lies in the middle of that interval. 
It is noted that for different fields (1.1) the parameters+,,generally speaking, may be 
different. 

Higher order moments (p = 3,4) of quantities y, (r) (1.3) were determined only in 

paper [17]. These data are regarded as preliminary since (as stated’in 1171) the readings 

were short (15-20 sec.) and the start of the reading was chosen at the appearance of 

large signals. Nevertheless paper [17] is the first observation of the fact that the higher 
order moments are of an exponentlal nature. Entered into Table 1 is the range of the 
value /.$stated in 1171 and corresponding to three different readings. 

In [18] the quantity pz was determined in the usual manner over the spectrum and, 

besides, the quantities (yp) for p = 1, 2, 3, 4. We have included in the Table the 
vaiues p.,and Pd(indicated by a cross) evaluated in the following manner: 

PP = Pa * (P = 3,4), up = (yp) (yp (5-i) 
The role of r and ,? in the expression for the moments (2.3) is taken here by the 

micro- and macro-scales of turbulence. These estimates are close to the values given 
by the model. 

In paper [18] are calculated also the quantities ( yp) on the basis of the logarithmic- 
normal law, very close (as to its mean square value) to the empirical distribution. Sub- 
stituting these values into the numerator of the second formula of (5.1) we obtain an 

estimate of the moments of the breakdown coefficient up* calculated on the basis of 
the logarithmic-normal law 

p=l 2 3 4 
a&z, = 1.24 2.05 5.84 35.4 

It is seen that these ratios grow with increase of the order of the moment in agreement 
with what was discussed in Sect. 3. The empirical diagram presented in [18] illustrates 

the curvature in coordinates in which the logarithmic-normal law appears as a straight 

line. The same situation also exists in 117, 20, 25, 291 ( l *). 
Some experimenters are inclined to blame the curvature in the range of small values 

of the argument on the presence of noise in the instrumentation. But one should think 

that this deviation from the asymptote exists also apart from the noise. It is difficult 
to imagine that the density distribution of the angular velocity of rotation of a fluid 
particle vanishes at ‘zero and has a steep maximum, as it follows from the logarithmic- 
normal law. The more so because the nominal mean value of the angular acceleration 
for constant angular velocity equals zero ( l **). 

l ) The second figure shown in [19] for ~‘a was obtained in an indirect way. 
l *) In @9] the distribution curve is plotted for the case bf moderate Reynolds numbers. 
For this case the value PS = 0.85 is unusually high. The value of PZ included in Table 1 
obtained from that same-paper is for high Re nolds numbers. 
l **) On the statistical description of a Y turbu ent vortex see the thesis for a Doctor’s 
degree of the author: “Statistical Models in the Theory of Turbulence”. M., 1969. 
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It is noted that the model density dis~ibuti~ (4.5) at zero goes to infinity, which does 
not interfere with its tending to the logarithmic-normal law (in the integral sense). As 
far as the region of large values of the argument Is concerned, here the limiting dlstribu- 
tion necessarily deviates from the lo~i~mic-normal asymptotics by virtue of the 
restriction (1.8). 

In conclusion let us make corrections for the similarity laws for the structural func- 
tions of the velocity field using the model disuibuti~. According to [5, 6, 211 

([v, (x + r) - u, (x)]P> N <e’,‘“P) r’i@ w ++I&) 

where the index I r denotes the velocity component in the r direction. Equation (4.2) 
gives specifically p~/,z-o.o7, p4,,z50.11 (5.2) 

These values may be compared with those which are obtained for the logarithmic-nor- 
mal distribution (3.7) (if it is formally assumed that pi* = 0, pLz’ = p) 

P% = - “&* El% y ZleP (5.3) 
The first of the estimates (5.3) was made in [21], where for ~1 = 0.4 the value ~1~ 
z - 0.04 was obtained. Corrections “/s for the law turn out to be low in both cases. 
In @O] are given the results~of measurements of the structural function of fourth order 
and a correction is found which agrees with (5.3) (for the value p zz 0.5) obtained in 
@O]) as well as with (5.2). 
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